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Abstract: We present quantum mechanical partition functions, free energies, entropies, and heat capacities of 1,3-

butadiene derived from ab initio calculations. Our technique makes use of a reaction path-like Hamiltonian to couple

all 23 vibrational modes to the large-amplitude torsion, which involves heavy asymmetric functional groups. Ab ini-
tio calculations were performed at the B3LYP, MP2, and CCSD(T) levels of theory and compared with experimental

values as a reference case. By using the ab initio potentials and projected frequencies, simple perturbative expres-

sions are presented for computing the couplings of all the vibrational modes to the large-amplitude torsion. The

expressions are particularly suited for programming in the new STAR-P software platform which automatically par-

allelizes our codes with distributed memory via a familiar MATLAB interface. Using the efficient parallelization

scheme of STAR-P, we obtain thermodynamic properties of 1,3-butadiene for temperatures ranging from 50 to 500 K.

The free energies, entropies, and heat capacities obtained from our perturbative formulas are compared with conventional

approximations and experimental values found in thermodynamic tables.
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Introduction

The pursuit and implementation of new approaches for calculat-

ing thermochemical properties from first principles has always

been a topic of ongoing research.1–4 As advances in quantum

chemical calculations have made it feasible to calculate potential

energy surfaces accurately, the use of computational chemistry

has become the method of choice for estimating free energies,

equilibrium constants, and reaction rates. For example, energies

for large molecules obtained from post-Hartree-Fock methods

such as Møller-Plesset perturbation theories and coupled-cluster

calculations are now commonplace in modern quantum chemis-

try.4 In particular, the widespread use of analytical gradients and

second derivatives of the potential energy has allowed theoreti-

cal results to replicate and sometimes rival experimental thermo-

dynamic data. Nevertheless, the raw results of ab initio elec-

tronic structure calculations always correspond to properties at

absolute zero temperature, and statistical thermodynamics is

required to obtain properties as functions of temperature.

In certain extreme situations, the ab initio results alone do

not correspond to absolute zero conditions, and the conventional

statistical thermodynamic formulas must also be corrected. The

most familiar case of this error arises when large-amplitude, in-

ternal motions of the nuclei are present in a molecule. For

example, the most common vibrations of nuclei occur when the

motions are localized close to the potential energy minima.

These high-frequency modes are well-approximated as small-

amplitude harmonic oscillations and zeroth-order vibrational

states. However, in the case of large-amplitude motions, such as

internal rotation or inversion, the motion extends over more than

one potential energy minimum, and the normal-mode approxi-

mation is invalid. Uncertainties in treating these internal torsions

and other anharmonic affects can be a significant error in ther-

modynamic and rate constant calculations.

The present paper focuses on the calculation of thermochemi-

cal properties where an asymmetric internal rotation is coupled

to the other vibrational modes and to the overall external rota-

tion in molecules. The conventional statistical mechanical

approach to computing partition functions and thermochemistry

of internal rotations is through the use of Pitzer-Gwinn tables5–7

or approximate analytical formulas. However, Pitzer also real-

Correspondence to: B. M. Wong; e-mail: usagi@mit.edu

q 2007 Wiley Periodicals, Inc.



ized that these protocols are only highly accurate when the

moments of inertia for overall rotation are weakly dependent on

the coordinates of internal rotation. To correct this inadequacy,

we use the ab initio internal coordinate path Hamiltonian for-

malism of Tew et al.8 to compute thermochemical properties

since analytical potentials are not available for most systems of

interest. This work demonstrates that thermochemical properties

can be easily computed from an ab initio coordinate path includ-

ing harmonic fluctuations projected from this path.

We present 1,3-butadiene, C4H6, as a prototypical molecule

with various types of complex couplings. The large-amplitude

internal rotation of 1,3-butadiene requires alignment of conju-

gated �-orbitals, and the energetics and vibrational frequencies

are strongly sensitive to variations in the torsional angle. For

example, a reliable description of this torsion and its couplings

is required to rationalize the thermodynamics and kinetics of the

Diels–Alder reaction, a mechanism which still attracts interest in

reaction dynamics.9 Furthermore, since the torsion involves

asymmetric internal rotors, the geometries and the effective

moment of inertia will also be strongly coupled to this internal

coordinate. When the barriers to internal rotation are small in

comparison with kBT, one would expect the torsion to become a

large-amplitude hindered internal rotor. The combination of

large amplitude and strong coupling would be expected to lead

to a break down in both the separability assumption and conven-

tional thermodynamic formulas. We provide simple corrective

formulas that can be easily implemented using high-level matrix

manipulation languages, in particular the new parallelized ver-

sion of STAR-P MATLAB.10,11 This method of calculation is

useful since the familiar STAR-P MATLAB interface contains

efficient, parallel, built-in functions that can be easily modified

to use on other molecular systems. The examples presented

allow the assessment of the accuracy of other conventional

assumptions used in computing partition functions and thermo-

chemical properties.

Hamiltonian

The theory of the internal coordinate path Hamiltonian is

expressed in terms of a single large-amplitude coordinate s, its
conjugate momentum p̂s (¼ �i�@/@s), and the coordinates Qk

(k ¼ 1, 2, . . ., 3N-7) and momenta P̂k (¼ �i�@/@Qk) of the

orthogonal small-amplitude vibrational modes. A detailed

description of the internal coordinate path Hamiltonian and its

derivation has been given by Tew et al.8 Their formulation is

closely related to the reaction path Hamiltonian by Miller,

Handy, and Adams12 with the exception that the internal coordi-

nate path need not be exactly parallel to the minimum energy

path. In the present work we use the internal coordinate path

method, but the dense vibrational spectra of large molecules

requires an approximate treatment for the other small-amplitude

modes. As reported previously,13 the following approximations

allow for the computation to be manageable: (1) the inertia ten-

sor depends weakly on the small-amplitude coordinates Qk, and

only the terms in the inertia tensor that depend on the large-am-

plitude coordinate s are retained; (2) the Coriolis terms are linear

in the small-amplitude coordinates Qk, and their contribution to

the kinetic energy is neglected; (3) numerically enforcing the

Eckart conditions minimizes many of the couplings between the

large-amplitude motion and the overall rotation of the molecule.

It follows from these approximations that the kinetic energy op-

erator for total angular momentum J ¼ 0 can be written in the

following form (cf. eq. (10) of ref. 13)

T̂ ¼ 1

2
p̂sI

�1
0ss p̂s þ

1

2
�1=4 p̂sI

�1
0ss�

�1=2 p̂s�
1=4

� �� �
þ 1

2

X3N�7

k¼1

P̂2
k ; (1)

where the scalar terms I0ss
�1 and � are given by

I�1
0ssðsÞ ¼

XN
i¼1

a0iðsÞ � a0iðsÞ
 !�1

(2)

�ðsÞ ¼ I�1
0ss � detðI�1

0 Þ; (3)

and I0 is the normal 3 � 3 Cartesian inertia tensor along the

path. The vectors ai (¼ mi
1/2ri) are the mass-weighted Cartesian

coordinates of the ith atom at a point on the path s with respect

to the Eckart axis system, and a0i ¼ dai/ds. The corresponding

potential energy can be expanded in terms of Qk. In this work,

only the term quadratic in the small-amplitude coordinates is

retained since the anharmonic terms are rarely available for

large polyatomics; therefore,

V̂ ¼ V0ðsÞ þ 1

2

X3N�7

k¼1

!2
kðsÞQ2

k ; (4)

where V0(s) is the energy along the internal coordinate path, and

!k(s) is the frequency of mode k obtained by diagonalization of

a projected Hessian matrix in the 3N�7 small-amplitude degrees

of freedom.

The simplest approximation to Ĥ ¼ T̂ þ V̂ is obtained by

neglecting the s-dependence of the !k
2(s)Qk

2 term in eq. (4). The

J ¼ 0 Hamiltonian in this zeroth-order approximation is

Ĥð0Þ ¼ 1

2
p̂sI

�1
0ss p̂s þ

1

2
�1=4 p̂sI

�1
0ss�

�1=2 p̂s�
1=4

� �� �

þ V0ðsÞ þ �h

2

X3N�7

k¼1

!kðsÞ � !kðs0Þ½ �

þ 1

2

X3N�7

k¼1

P̂2
kðs0Þ þ !2

kðs0ÞQ2
k

� �
; ð5Þ

where s0 is the value of the internal coordinate corresponding to

the most stable conformer of the molecule; i.e., V0 has a global

minimum at s ¼ s0. We denote this separable Hamiltonian in eq.

(5) as a zeroth-order Hamiltonian and solve the more exact

Hamiltonian given by eqs. (1) and (4) using perturbation theory.

The term �/2 [!k(s) – !k(s0)] is part of the effective potential

energy since it adds no extra computational complexity and sim-
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plifies our perturbative expressions. A convenient choice of basis

for eq. (5) is given by the direct product

����ð0Þ
m;nðs;Q1;Q2; . . . ;Q3N�7Þ

E
¼
��� mðsÞ

E Y3N�7

k¼1

j�nk ðQkÞ
E
; (6)

where n ¼ {n1, n2, . . ., n3N�7} is a set of 3N � 7 harmonic

quantum numbers,  m (s) is the mth eigenfunction of the large-

amplitude motion, and �nk (Qk) is a harmonic oscillator eigen-

function at s ¼ s0 with a number nk of quanta in oscillator k.
The zeroth-order Hamiltonian in eq. (5) can be solved by direct

diagonalization using several basis functions in the large-ampli-

tude coordinate s; its solution is straightforward

Eð0Þ
m;nk

¼ Em þ
X3N�7

k¼1

nk þ 1

2

� �
�h!kðs0Þ; (7)

where Em is an eigenvalue of the large-amplitude motion opera-

tor (first four terms in eq. (5)), which is determined by solving

the following matrix equation

D
 lðsÞ

��� 1
2
p̂sI

�1
0ss p̂s þ

1

2
�1=4 p̂sI

�1
0ss�

�1=2 p̂s�
1=4

� �� �
þ V0ðsÞ

þ �h

2

X3N�7

k¼1

!kðsÞ � !kðs0Þ½ �
��� mðsÞ

E
� �l;mEm ¼ 0: ð8Þ

The corrections due to the large-amplitude motion coupling with

the 3N�7 vibrational modes can be solved approximately using

perturbation theory. Taking the separable Hamiltonian in eq. (5)

to be the zeroth-order Hamiltonian, the approximate correction

to the energy in eq. (7) is the average value of Ĥ � Ĥ(0) over the

unperturbed states. In the representation of the chosen basis in

eq. (6), the approximate corrections are

Eð1Þ
m;n ¼ �h

X3N�7

k¼1

D
 mðsÞ

���!kðsÞ � !kðs0Þ
��� mðsÞ

E
nk: (9)

It should be noted that if the term �/2 [!k(s) – !k(s0)] was not

present in Ĥ (0), the expression in eq. (9) would be proportional

to (nk + [1/2]) instead of just nk. The inclusion of the term �/2
[!k(s) – !k(s0)] in Ĥ (0) makes the zeroth-order energies in eq.

(7) more accurate for both the nk ¼ 0 and higher nk states.

Therefore, the corrected energy with this perturbative treatment

is given by

EPert
m;n ¼ Eð0Þ

m;n þ Eð1Þ
m;n

¼ Em þ �h
X3N�7

k¼1

"
!kðs0Þ þ

D
 mðsÞ

���!kðsÞ � !kðs0Þ
��� mðsÞ

E#
nk

(

þ 1

2
!kðs0Þ

�
: ð10Þ

In the results section, we utilize this perturbative expression

to obtain thermochemical properties of 1,3-butadiene.

Ab Initio Calculations

All ab initio electronic structure calculations on 1,3-butadiene,

C4H6, were carried out with the Gaussian 03 package.14 A com-

plete geometry optimization places the minimum energy of 1,3-

butadiene to be in a trans isomeric form with a C2h point group

symmetry. In addition, 1,3-butadiene also exists as two equiva-

lent stable gauche forms. Extensive theoretical15–18 and a few

experimental19–20 studies have been carried out on this �-conju-
gated torsional potential energy surface. One of the most recent

theoretical studies on 1,3-butadiene in the current literature is

the investigation by Karpfen and Parasuk.18 Their analysis

includes several ab initio calculations of the torsional potential

performed at the MP2 and CCSD(T) levels of theory. In all

cases they considered, the torsional energy profile follows the

most stable trans conformation over a transition state and

gauche minimum to the cis transition state. The most consistent

and accurate ab initio energies are from their CCSD(T)/cc-pV5Z

calculations which yield a 1014 cm�1 energy difference between

the trans and gauche minima. The currently accepted experi-

mental value is 989 cm�1 obtained from UV spectra.19

Since the focus of this work is to improve conventional

assumptions for calculating partition functions and thermochemi-

cal properties, we do not intend to reproduce Karpfen and

Parasuk’s ab initio values exactly. Instead we wish to obtain rea-

sonable results from a fairly accurate computational method

which provides second derivatives. To this end, the relaxed ge-

ometry parameters and Hessian matrices were analyzed using

second order Møller-Plesset perturbation theory (MP2) and den-

sity functional theory with the B3LYP hybrid density functional.

The basis set used for both levels of theory was Dunning’s cor-

relation consistent triple-zeta basis, cc-pVTZ.21 The geometry

optimizations for both the MP2 and B3LYP methods were car-

ried out with the ‘‘OPT ¼ verytight’’ option which converges

root mean square forces to 0.00001 atomic units and root mean

square displacements to 0.00004 atomic units. The force con-

stant matrix was output by setting internal options using the

‘‘IOP(7/33 ¼ 1)’’ keyword. In addition to these keywords, the

‘‘Int ¼ Ultrafine’’ option must also be specified for density func-

tional calculations. This additional selection is recommended

when using the ‘‘OPT ¼ verytight’’ option to minimize the low-

frequency translational and rotational modes. CCSD(T) single-

point energies were subsequently performed with the cc-pVTZ

basis set at the MP2 and B3LYP optimized geometries.

For all levels of theory, the torsional potential was calculated

by constraining the C¼¼C��C¼¼C dihedral angle at 108 incre-

ments and optimizing all other internal coordinates to minimize

the total energy. At all intermediate geometries between the C2h

trans minimum and the C2v cis maximum, molecular symmetry

was constrained to a C2 point group. The torsional potentials rel-

ative to the trans global minimum as obtained for B3LYP, MP2,

CCSD(T)//B3LYP, CCSD(T)//MP2, and the experimental poten-

tial19 are shown in Figure 1. The differences between the

CCSD(T)//B3LYP and CCSD(T)//MP2 potentials are unnotice-

able at the scale of Figure 1 since the single-point energies do

not differ by more than 20 cm�1 over the entire range. The large

deviation of the B3LYP potential from the CCSD(T) energies is

expected since it is well-known that DFT methods generally pre-
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dict higher trans-gauche barriers.22 At the MP2 level of theory,

the barrier height is lower than the corresponding B3LYP

energy, but there is still a significant reduction of the barrier

height when the CCSD(T) method is employed. Of all the meth-

ods used in this work, we observe the best agreement between

the CCSD(T)//MP2 potential and the experimental energy differ-

ences. The relative energy of the gauche form calculated with

respect to the trans isomer was 1124 cm�1 at this level of

theory with the cc-pVTZ basis. Although the trans-gauche bar-

rier for CCSD(T)//MP2 is still 212 cm�1 higher than the experi-

mentally derived value, this discrepancy is well-known and has

been documented by others.18 In the remainder of this work, we

will only utilize the geometries, energies, gradients, and force

constant matrices obtained from the CCSD(T)//MP2 method in

calculating torsional energies and thermochemical properties.

The torsional potential energy surface of 1,3-butadiene is

invariant under the �h symmetry operation, and the C¼¼C��C¼¼C

dihedral angle preserves this permutation symmetry of the true

Hamiltonian. Therefore, the fully symmetric internal coordinate

path, energies, gradients, and force constant matrices can be

constructed with only the information from trans to cis by using

permutation operations in a local frame. Each resulting geometry

was translated to the center of mass frame, and all Cartesian

components as a function of s were fit to a Fourier series. In

this way, finite differences can be used to numerically solve for

the Euler angles which rotate the Cartesian axes and force con-

stant matrix to align the molecule along an Eckart frame.

We should also remember the ordering of the projected fre-

quencies by diagonalization of the projected force constant ma-

trix is arbitrary for each value of the dihedral angle. Introducing

factors of �1 and re-labeling eigenvectors to maximize consecu-

tive dot products generates a set of physically meaningful dia-

batic frequencies and orthogonal vibrational modes.23 It is essen-

tial to obtain the correct ordering of frequencies and eigenvec-

tors since it provides a correct model for the strong coupling

between the torsional motion and other vibrational modes. This

is verified with our level of theory, and Figure 2 shows the

strong variation of the projected harmonic frequencies as a func-

tion of the internal coordinate path. In other words, the harmonic

wave numbers are not constant with respect to s, indicating a

mixing of pure torsion with other vibrational modes.

Thermodynamic Calculations and Results

The J ¼ 0 canonical partition function can be calculated by nu-

merical summation over several torsional-vibrational energy lev-

els and their perturbations (eq. (10)). The rovibrational energies

Figure 1. Experimental torsional potential of 1,3-butadiene com-

pared with ab initio calculations from B3LYP, MP2, and CCSD(T)

levels of theory.

Figure 2. Projected harmonic frequencies for 1,3-butadiene com-

puted as a function of the torsional angle. The lowest four frequencies,

�24, �9, �12, and �16, are highly coupled to the large-amplitude torsion.

Figure 3. The lowest 100 effective products of inertia obtained by

averaging det[I0(s)] across the torsional wavefunctions (cf. eq. (16)).

The broken line indicates the numerical value of the equilibrium

products of inertia I0aI0bI0c calculated at the trans global minimum

of 1,3-butadiene.
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for any J value can be approximately obtained by letting the

rotational energy EJ,m depend only on J and the mth eigenvalue

of the large-amplitude torsion. Therefore, the energy of a partic-

ular rovibrational state is given by

EJ;m;n ¼ EJ;m þ Eð0Þ
m;n þ Eð1Þ

m;n

¼ EJ;m þ Em þ �h
X3N�7

k¼1

nh
!kðs0Þ

þ
D
 mðsÞ

���!kðsÞ � !kðs0Þ
��� mðsÞ

Ei
nk þ 1

2
!kðs0Þ

o
: ð11Þ

In this approximation, the canonical partition function becomes

QPertðTÞ ¼
X
J;m;n

exp

(
�
"
EJ;m;n � �h

X3N�7

k¼1

1

2
!kðs0Þ

#
� kBT

)

¼
X
J;m;n

exp �
(
EJ;m þ Em þ �h

X3N�7

k¼1

!kðs0Þ½
 

þh mðsÞj!kðsÞ � !kðs0Þj mðsÞi�nk
)

� kBT

!
: ð12Þ

The partition functions in this paper are defined with the zero of

energy at the lowest quantum state; hence, the partition function

is bounded from below by unity. This is the standard choice in

thermodynamic tables when calculating Gibbs free energies,

entropies, and heat capacities. The summation over the set of

3N�7 projected harmonic quantum numbers is a geometric se-

ries and can be summed exactly to give

QPertðTÞ¼
X
m

expð�Em=kBTÞ
X
J

expð�EJ;m=kBTÞ
Y3N�7

k¼1

qvib;m;kðTÞ
" #

¼
X
m

expð�Em=kBTÞqrot;mðTÞ
Y3N�7

k¼1

qvib;m;kðTÞ
" #

; ð13Þ

where

qvib;m;kðTÞ
¼ 1

1�expf��h½!kðs0Þþh mðsÞj!kðsÞ�!kðs0Þj mðsÞi��kBTg
ð14Þ

is a modified partition function for the kth projected vibrational

mode, and

qrot;mðTÞ ¼ 1

�

2kBT

�h2

� �3=2

f�h mðsÞj det½I0ðsÞ�j mðsÞig1=2 (15)

is a modified partition function for the external rotation, which

is allowed to depend only on the mth eigenstate of the large-

amplitude torsion. The variable � (¼ 2 for 1,3-butadiene) is the

rotational symmetry number that prevents overcounting of indis-

tinguishable configurations in classical phase space. Addition-

ally, the partition function in eq. (15) approximately takes into

account the coupling between internal and external rotation by

replacing the equilibrium products of inertia I0aI0bI0c by the tor-

sional-averaged quantity

Ieff;m ¼ h mðsÞj det½I0ðsÞ�j mðsÞi: (16)

Conventionally, the rotational constants used in the standard

rotational partition function are evaluated from the inertia tensor

at the equilibrium geometry. Since the rotational constants

depend strongly on the internal rotation coordinate for asymmet-

Figure 4. Ratios of partition functions QPert(T)/QHO(T) and QPert(T)/
Q(0)(T) for temperatures ranging from 50 to 500 K. For 1,3-butadi-

ene, the conventional harmonic oscillator partition function differs

from QPert(T) by over 20% for temperatures near 500 K.

Table 1. Comparison of Gibbs Free Energy Values for 1,3-Butadiene at Various Temperatures.

50 K 100 K 150 K 200 K 273.15 K 300 K 400 K 500 K

Ref. 26/(kJ mol�1) �7.95 �18.29 �29.70 �41.93 �61.10 �68.50 �97.75 �129.59

GPert/(kJ mol�1) �7.94 �18.27 �29.66 �41.86 �60.98 �68.35 �97.44 �129.05

G(0)/(kJ mol�1) �7.94 �18.26 �29.66 �41.86 �60.96 �68.32 �97.37 �128.91

G(HO)/(kJ mol�1) �7.94 �18.26 �29.63 �41.81 �60.87 �68.21 �97.08 �128.30

The free energy values for each of the three models (Pert, (0), and HO) were calculated using the same molecular

geometries, energies, and frequencies at the CCSD(T)//MP2 level of theory.
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ric rotors, this effect can be incorporated by evaluating the de-

terminant of the inertia tensor averaged over the large-amplitude

wavefunctions.24

Figure 3 shows the variation of Ieff,m for the lowest 100 tor-

sional states for 1,3-butadiene. The dotted horizontal line is the

numerical value for the rigid rotor products of inertia I0aI0bI0c
evaluated at the trans conformation. For 1,3-butadiene, the 32nd

rotor level is the first torsional level above the highest barrier to

rotation. For m < 7, Ieff,m does not vary appreciably since the

torsional wavefunction is localized in the trans global minimum.

For 7 < m < 32, Ieff,m varies rapidly between two limits since

the torsional wavefunction alternates between the two gauche
local minima and the single trans minimum. The two pairs of

points near Ieff,m & 2.23 � 105 (amu Å2)3 correspond to the

two torsional-averaged gauche effective inertias and the single

points near Ieff,m & 2.00 � 106 (amu Å2)3 are the averaged

trans effective inertias. For m > 32, the torsion is nearly a free

rotation, and Ieff,m is approximately constant with a limiting

value of approximately 2.06 � 106 (amu Å2)3. Figure 3 indicates

the value of Ieff,m is 25% larger than the equilibrium products of

inertia I0aI0bI0c when m > 32; using the conventional rigid rotor

inertias may incur significant errors in the external rotational

partition function alone.

The matrix expressions defined in eqs. (8–15) are naturally

suited for programming in a high-level matrix manipulation lan-

guage such as MATLAB. However, a large set of energy eigen-

values is required so that the error due to the limited number of

states included in the partition function is negligible for the

higher temperatures of interest. The corresponding set of eigen-

vectors is also necessary in this computation in order to calcu-

late the perturbations and expectation values defined in eqs. (9)

and (16), respectively. As a result, these massive computations

were performed in a highly parallelized manner with MATLAB

software enabled by the new STAR-P interactive parallel com-

puting platform provided by Interactive Supercomputing, Inc.

Detailed descriptions of STAR-P and its software architecture

has been given by Choy and Edelman.10,11 For the present work

on 1,3-butadiene, a large set of eigenvalues and eigenvectors for

the Hamiltonian defined in eq. (5) were computed by diagonaliz-

ing a double-precision 20,001 � 20,001 matrix.

The novelty of this procedure lies in the use of a high-level

matrix manipulation language to compose the equations and

allowing the STAR-P platform to transform the high-dimen-

sional MATLAB manipulations into parallelized codes easily ex-

ecuted on workstation clusters. The high-level STAR-P system

allows easy implementation of eqs. (8)–(15) by providing the

look of a MATLAB interface but the power of several worksta-

tion computers. For this work, all codes were written in regular

MATLAB m-files and automatically converted by the STAR-P

program to run on an SGI Altix 350 server which comprises 16

Itanium 2 processors (1.0 Ghz) and 80 GB of RAM. One of the

many bottlenecks associated with obtaining all 20,001 eigenval-

ues and 20,001 � (3N�7) perturbations is the storage and subse-

quent diagonalization of the Hamiltonian matrix. To remove this

computational difficulty, the STAR-P software automatically

partitions the Hamiltonian in blocks that are computed and

stored with distributed memory. Finally, an automatic adminis-

tration process controls the load-balance of the computing nodes

and distributes the needed data to be diagonalized and matrix-

multiplied in parallel. Using the obtained energy eigenvalues

and expectation values, the partition function defined in eq. (13)

was easily computed.

Figure 4 shows the ratios of QPert(T)/QHO(T) and QPert(T)/
Q(0)(T) as a function of temperature where QHO(T) is the con-

ventional harmonic oscillator, rigid rotor partition function,

Q(0)(T) results from summations of energies in eq. (7), and

QPert(T) is the partition function defined in eq. (13). In both

QHO(T) and Q(0)(T) the equilibrium products of inertia I0aI0bI0c
were used in the rotational partition function. The conventional

harmonic oscillator partition function from the raw ab initio cal-

culations differs from QPert(T) by over 20% for temperatures up

to 500 K. The more reasonable approximation of Q(0)(T) devi-

ates from QPert(T) much less than QHO(T), but there is still a 4%

difference. As a result, the neglect of the various torsionally-

averaged quantities in eqs. (9) and (16) can incur serious errors

if applied to high-temperature conditions.

Table 2. Comparison of Entropy Values for 1,3-Butadiene at Various Temperatures.

50 K 100 K 150 K 200 K 273.15 K 300 K 400 K 500 K

Ref. 26/(J K�1 mol�1) 192.63 218.82 236.84 251.89 272.07 279.28 305.63 330.80

SPert/(J K�1 mol�1) 192.36 218.51 236.49 251.37 271.06 278.06 303.65 328.28

S(0)/(J K�1 mol�1) 192.34 218.47 236.43 251.26 270.82 277.76 303.08 327.44

S(HO)/(J K�1 mol�1) 192.28 218.25 236.11 250.80 269.93 276.61 300.66 323.59

Table 3. Comparison of Heat Capacity Values for 1,3-Butadiene at Various Temperatures.

50 K 100 K 150 K 200 K 273.15 K 300 K 400 K 500 K

Ref. 26/(J K�1 mol�1) 35.09 41.31 48.28 57.14 73.70 80.27 103.44 122.09

CP
Pert/(J K�1 mol�1) 34.98 41.30 48.00 56.15 71.56 77.86 100.81 119.84

CP
(0)/(J K�1 mol�1) 34.98 41.26 47.89 55.91 70.97 77.12 99.67 118.62

CP
(HO)/(J K�1 mol�1) 34.79 41.02 47.60 55.18 68.61 73.99 93.98 111.76
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As a final application of our results for a large-amplitude

asymmetric torsion, the thermodynamic functions for the Gibbs

free energy, entropy, and heat capacity of 1,3-butadiene can be

directly calculated from the canonical partition function:

GðTÞ ¼ �RT ln½QðTÞ�; (17)

SðTÞ ¼ R ln½QðTÞ� þ RT
@ ln½QðTÞ�

@T
; (18)

CPðTÞ ¼ 2RT
@ ln½QðTÞ�

@T
þ RT2 @

2 ln½QðTÞ�
@T2

þ R; (19)

where R is the ideal gas constant, and Q(T) implicitly includes a

contribution due to translation, which is always separable from

vibration and rotation. The numerical values of G(T), S(T), and
CP(T) each computed from the different partition functions

Q(0)(T), QHO(T), and QPert(T) are given in Tables 1–3. The first

row of each table gives the experimental values recommended

by the National Institute of Standards and Technology25 found

in standard thermodynamic reference data.26 The data compiled

in the standard thermodynamic references are sometimes

obtained by averaging several experimentally calculated values;

as a result, the error for each data set is difficult to quantify, and

the reference data should not be expected to be better than 1%

from the best experimental results. The effect of the perturbative

results (Pert) in the thermodynamic properties of 1,3-butadiene

is also shown in Figures 5a–5c to compare with the zeroth-order

(0) and harmonic approximations (HO). The deviation from the

experimental values (Exp.) is similar in all three cases with the

perturbative results being closest to the tabulated values fol-

lowed by the zeroth-order and harmonic approximations. Among

the three thermodynamic functions G, S, and CP, we observe

considerable quantitative differences between the approximate

methods in calculating the Gibbs free energy. This result can be

understood realizing that the error in ln(Q) is higher and

increases faster than its temperature derivatives @ ln(Q)/@T and

@2 ln(Q)/@T2. Therefore, the use of a harmonic oscillator approx-

imation will incur more error in the Gibbs free energy than in

heat capacity values.

Conclusions

We have presented a simple approach to construct partition

functions and thermochemical properties for the situation where

a large-amplitude motion is coupled to both a set of small-am-

plitude vibrations and the external rotation of a molecule. This

theoretical treatment is based on the internal coordinate path ki-

netic energy operator with the corresponding potential energy

obtained from an ab initio computational method. Using this for-

mulation of the coordinate path, we have applied a perturbative

approach to study 1,3-butadiene since it provides an excellent

model for a highly coupled system with a very large configura-

tion space (23 vibrational modes coupled to a torsion).

Figure 5. (a)–(c) Deviations of free energies, entropies, and heat

capacities from tabulated thermodynamic values of 1,3-butadiene.

Each of the three curves was obtained using the methods described

in the results section; in all the cases considered, the deviations are

smallest for the perturbative expressions.
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One of the more important aspects of our implementation is

the use of the new STAR-P interactive parallel computing plat-

form to easily transform our simple MATLAB scripts into paral-

lelized codes easily executed on workstation clusters. Having

these programs written in a familiar high-level language permits

easy modification of the MATLAB scripts for applications with

even larger systems. Of course, the predictions of a theoretical

model should be consistent with the experimental observations

to which the model is applied. A comparison of computed Gibbs

free energies, entropies, and heat capacities for 1,3-butadiene

against experimental data indicates the perturbative expressions

are more accurate than the zeroth-order or harmonic oscillator

approximations for all the cases considered. In conclusion, the

practical feature that makes this method feasible for even very

large molecules is that it requires a relatively modest number of

calculations—algorithms for evaluating second derivatives in

quantum chemistry calculations are now efficient and routine,

and the use of high-level programs makes this approach useful

for polyatomic systems.

The MATLAB scripts used to run the STAR-P interactive

parallel computing platform can be obtained upon request from

the corresponding author.
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